Differential Polynomial Rings of Triangular Matrix Rings

Authors

  • A. Moussavi
  • H. Ghahramani
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Strongly clean triangular matrix rings with endomorphisms

‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+J(R)‎, ‎bin J(R)$‎, ‎$l_a-r_{sigma(b)}‎: ‎Rto R$ is surjective‎. ‎Furt...

full text

On Skew Triangular Matrix Rings

For a ring R, endomorphism α of R and positive integer n we define a skew triangular matrix ring Tn(R,α). By using an ideal theory of a skew triangular matrix ring Tn(R,α) we can determine prime, primitive, maximal ideals and radicals of the ring R[x;α]/〈xn〉, for each positive integer n, where R[x;α] is the skew polynomial ring, and 〈xn〉 is the ideal generated by xn.

full text

Zero-Divisor Graph of Triangular Matrix Rings over Commutative Rings

Let R be a noncommutative ring. The zero-divisor graph of R, denoted by Γ(R), is the (directed) graph with vertices Z(R)∗ = Z(R)− {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an edge x → y if and only if xy = 0. In this paper we investigate the zero-divisor graph of triangular matrix rings over commutative rings. Mathematics Subject Classification: 16S70; ...

full text

Modules over Differential Polynomial Rings

This note announces a number of results on the structure of differential modules over differential rings, where differential ring means a ring with a family of derivations and differential module means a module having a family of operators compatible with the derivations of the ring. To fix notation, throughout the paper we let A denote an associative ring, M = AM an 4-module, k the correspondi...

full text

Derived Equivalences for Triangular Matrix Rings

We generalize derived equivalences for triangular matrix rings induced by a certain type of classical tilting module introduced by Auslander, Platzeck and Reiten to generalize reflection functors in the representation theory of quivers due to Bernstein, Gelfand and Ponomarev.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 34  issue No. 2

pages  71- 96

publication date 2011-01-31

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023